Užbaikite Einšteino teorijas – proveržis dalelių fizikoje

Praėjus daugiau nei šimtmečiui nuo jo pasirodymo pirmą kartą, mokslininkai atliko Einšteino namų darbus apie specialųjį elektromagnetizmo reliatyvumą.

Osakos universiteto mokslininkai rodo reliatyvistinį elektrinio lauko, kurį sukuria greitai judančios įkrautos dalelės, susitraukimą, kaip numato Einšteino teorija, o tai gali padėti pagerinti dalelių ir radiacijos fizikos tyrimus.

Daugiau nei prieš šimtmetį vienas garsiausių šiuolaikinių fizikų Albertas Einšteinas pasiūlė novatorišką specialiojo reliatyvumo teoriją. Dauguma visko, ką žinome apie visatą, remiasi šia teorija, tačiau dalis jos dar nebuvo eksperimentiškai įrodyta. mokslininkai, kurie Osakos universitetas Lazerinės inžinerijos institutas pirmą kartą panaudojo itin greitus elektrooptinius matavimus, kad vizualizuotų elektrinio lauko, supančio beveik šviesos greičiu skriejantį elektronų pluoštą, susitraukimą ir pademonstruotų generavimo procesą.

Pagal Einšteino specialiojo reliatyvumo teoriją, norint apibūdinti objektų, pro stebėtoją artėjančiu šviesos greičiu, judėjimą reikia naudoti „Lorenco transformaciją“, kuri sujungia erdvės ir laiko koordinates. Jis sugebėjo paaiškinti, kaip šios transformacijos lėmė savaime nuoseklias elektrinių ir magnetinių laukų lygtis.

Nors įvairūs reliatyvumo padariniai buvo daug kartų įrodyta labai dideliu eksperimentų laipsniu[{” attribute=””>accuracy, there are still parts of relativity that have yet to be revealed in experiments. Ironically, one of these is the contraction of the electric field, which is represented as a special relativity phenomenon in electromagnetism.

Formation Process of Planar Electric Field Contraction

Illustration of the formation process of the planar electric field contraction that accompanies the propagation of a near-light-speed electron beam (shown as an ellipse in the figure). Credit: Masato Ota, Makoto Nakajima

Now, the research team at Osaka University has demonstrated this effect experimentally for the first time. They accomplished this feat by measuring the profile of the Coulomb field in space and time around a high-energy electron beam generated by a linear particle accelerator. Using ultrafast electro-optic sampling, they were able to record the electric field with extremely high temporal resolution.

It has been reported that the Lorentz transformations of time and space as well as those of energy and momentum were demonstrated by time dilation experiments and rest mass energy experiments, respectively. Here, the team looked at a similar relativistic effect called electric-field contraction, which corresponds to the Lorentz transformation of electromagnetic potentials.

“We visualized the contraction of an electric field around an electron beam propagating close to the speed of light,” says Professor Makoto Nakajima, the project leader. In addition, the team observed the process of electric-field contraction right after the electron beam passed through a metal boundary.

When developing the theory of relativity, it is said that Einstein used thought experiments to imagine what it would be like to ride on a wave of light. “There is something poetic about demonstrating the relativistic effect of electric fields more than 100 years after Einstein predicted it,” says Professor Nakajima. “Electric fields were a crucial element in the formation of the theory of relativity in the first place.”

This research, with observations matching closely to Einstein’s predictions of special relativity in electromagnetism, can serve as a platform for measurements of energetic particle beams and other experiments in high-energy physics.

Reference: “Ultrafast visualization of an electric field under the Lorentz transformation” by Masato Ota, Koichi Kan, Soichiro Komada, Youwei Wang, Verdad C. Agulto, Valynn Katrine Mag-usara, Yasunobu Arikawa, Makoto R. Asakawa, Youichi Sakawa, Tatsunosuke Matsui and Makoto Nakajima, 20 October 2022, Nature Physics.
DOI: 10.1038/s41567-022-01767-w

The study was funded by the Japan Society for the Promotion of Science and the NIFS Collaborative Research Program. 

READ  Mokslininkai atrado saulės modelius, kurie galėtų padėti suprasti kosminį orą

Parašykite komentarą

El. pašto adresas nebus skelbiamas. Būtini laukeliai pažymėti *