Įspūdingi tyrimai atskleidžia, kaip mankšta cheminiais signalais pagerina smegenų sveikatą

Pratimai gali tiesiogiai pagerinti smegenų sveikatą, skatindami neuronų vystymąsi hipokampe, o astrocitai atlieka pagrindinį vaidmenį tarpininkaujant poveikiui. Šis tyrimas gali paskatinti pratimais pagrįstą kognityvinių sutrikimų, tokių kaip Alzheimerio liga, gydymą.

Tyrinėdami raumenų ląstelių susitraukimo generuojamus cheminius signalus, galima rasti būdų, kaip pagerinti smegenų sveikatą mankštinant.

Beckmano mokslininkai ištyrė, kaip cheminiai signalai iš susitraukiančių raumenų skatina sveikas smegenis. Jų išvados atskleidžia, kaip šie signalai padeda kurti ir reguliuoti naujus smegenų tinklus, taip pat nurodo būdus, kaip pagerinti smegenų sveikatą mankštinant.

Fizinis aktyvumas dažnai minimas kaip būdas pagerinti fizinę ir psichinę sveikatą. Beckmano pažangaus mokslo ir technologijų instituto mokslininkai parodė, kad tai taip pat gali tiesiogiai pagerinti smegenų sveikatą. Jie tyrė, kaip raumenų pratimų cheminiai signalai skatina neuronų augimą smegenyse.

Jų darbai buvo paskelbti žurnale Neurologija.

Kai fizinio krūvio metu raumenys susitraukia, pavyzdžiui, bicepsas, kai keliamas sunkus svoris, jie į kraują išskiria įvairius junginius. Šie junginiai gali patekti į įvairias kūno dalis, įskaitant smegenis. Tyrėjus ypač domino, kaip pratimai gali būti naudingi konkrečiai smegenų daliai, vadinamai hipokampu.

„Hipokampas yra svarbus mokymosi ir atminties, taigi ir pažinimo sveikatos regionas“, – sakė mokslų daktaras Ki Yun Lee. mechanikos mokslų ir inžinerijos studentas Ilinojaus universitete, Urbana-Champaign, ir pagrindinis tyrimo autorius. Taigi supratimas, kaip mankšta naudinga hipokampui, gali būti sukurta pratimais pagrįsta terapija įvairioms sąlygoms, įskaitant[{” attribute=””>Alzheimer’s disease.

Hippocampal Neurons and Astrocytes

Hippocampal neurons (yellow) surrounded by astrocytes (green) in a cell culture from the study. Image provided by the authors. Credit: Image provided by the study authors: Taher Saif, Justin Rhodes, and Ki Yun Lee

To isolate the chemicals released by contracting muscles and test them on hippocampal neurons, the researchers collected small muscle cell samples from mice and grew them in cell culture dishes in the lab. When the muscle cells matured, they began to contract on their own, releasing their chemical signals into the cell culture.

The research team added the culture, which now contained the chemical signals from the mature muscle cells, to another culture containing hippocampal neurons and other support cells known as astrocytes. Using several measures, including immunofluorescent and calcium imaging to track cell growth and multi-electrode arrays to record neuronal electrical activity, they examined how exposure to these chemical signals affected the hippocampal cells.

The results were striking. Exposure to the chemical signals from contracting muscle cells caused hippocampal neurons to generate larger and more frequent electrical signals — a sign of robust growth and health. Within a few days, the neurons started firing these electrical signals more synchronously, suggesting that the neurons were forming a more mature network together and mimicking the organization of neurons in the brain.

However, the researchers still had questions about how these chemical signals led to growth and development of hippocampal neurons. To uncover more of the pathway linking exercise to better brain health, they next focused on the role of astrocytes in mediating this relationship.

“Astrocytes are the first responders in the brain before the compounds from muscles reach the neurons,” Lee said. Perhaps, then, they played a role in helping neurons respond to these signals.

The researchers found that removing astrocytes from the cell cultures caused the neurons to fire even more electrical signals, suggesting that without the astrocytes, the neurons continued to grow — perhaps to a point where they might become unmanageable.

“Astrocytes play a critical role in mediating the effects of exercise,” Lee said. “By regulating neuronal activity and preventing hyperexcitability of neurons, astrocytes contribute to the balance necessary for optimal brain function.”

Understanding the chemical pathway between muscle contraction and the growth and regulation of hippocampal neurons is just the first step in understanding how exercise helps improve brain health.

“Ultimately, our research may contribute to the development of more effective exercise regimens for cognitive disorders such as Alzheimer’s disease,” Lee said.

Reference: “Astrocyte-mediated Transduction of Muscle Fiber Contractions Synchronizes Hippocampal Neuronal Network Development” by Ki Yun Lee, Justin S. Rhodes and M. Taher A. Saif, 2 February 2023, Neuroscience.
DOI: 10.1016/j.neuroscience.2023.01.028

In addition to Lee, the team also included Beckman faculty members Justin Rhodes, a professor of psychology; and Taher Saif, a professor of mechanical science and engineering and bioengineering.

Funding: NIH/National Institutes of Health, National Science Foundation

READ  Mikroskopinės erkės, kurios naktį liečiasi su mūsų veidu, netrukus gali tapti žmonėmis

Parašykite komentarą

El. pašto adresas nebus skelbiamas. Būtini laukeliai pažymėti *