Eksperimentinis tetraedro atradimas – keista materijos būsena

Mokslininkai paskelbė eksperimentiškai atradę tetraneutroną – keistą naują materijos būseną, kuri taip pat gali turėti savybių, naudingų dabartinėms ar naujoms technologijoms.

Teorinis fizikas Jamesas Farrey laukė branduolinės fizikos eksperimentų, patvirtinančių „tetraneutrono“, kurį jis ir jo kolegos pirmą kartą iškėlė, numatė ir paskelbė per pristatymą 2014 m. vasarą, o rudenį paskelbtas mokslinis darbas. 2014 m.

„Kai pristatome teoriją, visada turime pasakyti, kad laukiame eksperimentinio patvirtinimo“, – sakė Ajovos valstijos universiteto fizikos ir astronomijos profesorius Fary.

Keturių (labai labai) neutronų, trumpam susijungusių laikinoje kvantinėje būsenoje arba rezonanso atveju, Vary ir tarptautinės fizikų komandos diena yra čia.

Ką tik paskelbtas eksperimentinis tetrotrono atradimas, kurį atliko tarptautinė grupė, vadovaujama mokslininkų iš Vokietijos Darmštato technikos universiteto, atveria duris naujiems tyrimams ir gali padėti geriau suprasti, kaip visata susijungia. Ši nauja ir egzotiška materijos būsena taip pat gali turėti naudingų savybių dabartinėse ar naujose technologijose.

Tetraneutronas prognozuojamas teoriniais skaičiavimais

Andrejus Širokovas iš Maskvos valstybinio universiteto Rusijoje, kuris buvo kviestinis mokslininkas Ajovoje, ir Jamesas Fary iš Ajovos, priklausantis tarptautinei branduolinių fizikų komandai, kuri 2014 ir 2016 m. kūrė, numatė ir paskelbė tetraneutronų struktūrą. Christopheris Gannonas / Ajovos valstijos laisvųjų menų ir mokslų koledžas

Pirma, kaip dėl apibrėžimo

Tikriausiai iš gamtos mokslų pamokos prisimenate, kad neutronai yra subatominės dalelės be krūvio, kurios susijungia su teigiamai įkrautais protonais ir sudaro branduolį.[{“ attribute=““>atom. Well, individual neutrons aren’t stable and after a few minutes convert into protons. Combinations of double and triple neutrons also don’t form what physicists call a resonance, a state of matter that is temporarily stable before it decays.

Enter the tetraneutron

Using the supercomputing power at the Lawrence Berkeley National Laboratory in California, the theorists calculated that four neutrons could form a resonant state with a lifetime of just 3×10^(-22) seconds, less than a billionth of a billionth of a second. It’s hard to believe, but that’s long enough for physicists to study.

Tetraneutron’s Energy and Width

This graph shows experimental measurements and theoretical predictions for the tetraneutron’s energy and width, essential properties of this exotic state of matter. The measurements are in millions of electron volts, a common unit of measurement in high-energy and nuclear physics. The most recent experimental results are second from the left and labelled 2022. The theoretical predictions by the research group that includes Iowa State’s James Vary are the four columns labelled “NCSM” and represent results from different realistic inter-neutron interactions. These results were published in 2016 and 2018. The theoretical predictions labelled “GSM” were published in 2019 by a group based in China. They use a different method that complements the NCSM method. Publication details are also listed. Credit: James Vary/Iowa State University

A detail or two

The theorists’ calculations say the tetraneutron should have an energy of about 0.8 million electron volts (a unit of measurement common in high-energy and nuclear physics – visible light has energies of about 2 to 3 electron volts.) The calculations also said the width of the plotted energy spike showing a tetraneutron would be about 1.4 million electron volts. The theorists published subsequent studies that indicated the energy would likely lie between 0.7 and 1.0 million electron volts while the width would be between 1.1 and 1.7 million electron volts. This sensitivity arose from adopting different available candidates for the interaction between the neutrons.

A just-published paper in the journal Nature reports that experiments at the Radioactive Isotope Beam Factory at the RIKEN research institute in Wako, Japan, found tetraneutron energy and width to be around 2.4 and 1.8 million electron volts respectively. These are both larger than the theory results but Vary said uncertainties in the current theoretical and experimental results could cover these differences.

Why it’s a big deal

“A tetraneutron has such a short life it’s a pretty big shock to the nuclear physics world that its properties can be measured before it breaks up,” Vary said. “It’s a very exotic system.”

It is, in fact, “a whole new state of matter,” he said. “It’s short-lived, but points to possibilities. What happens if you put two or three of these together? Could you get more stability?”

Experiments trying to find a tetraneutron started in 2002 when the structure was proposed in certain reactions involving one of the elements, a metal called beryllium. A team at RIKEN found hints of a tetraneutron in experimental results published in 2016.

“The tetraneutron will join the neutron as only the second chargeless element of the nuclear chart,” Vary wrote in a project summary. That “provides a valuable new platform for theories of the strong interactions between neutrons.”

The papers, please

Meytal Duer of the Institute for Nuclear Physics at the Technical University of Darmstadt is the corresponding author of the Nature paper — “Observation of a correlated free four-neutron system” — announcing the experimental confirmation of a tetraneutron. The experiment’s results are considered a five-sigma statistical signal, denoting a definitive discovery with a one in 3.5 million chance the finding is a statistical anomaly.

The theoretical prediction was published October 28, 2016, in the journal Physical Review Letters (Prediction for a Four-Neutron Resonance). Andrey Shirokov of the Skobeltsyn Institute of Nuclear Physics at Moscow State University in Russia, who has been a visiting scientist at Iowa State, is the first author. Vary is one of the corresponding authors. Grants from the U.S. Department of Energy, the National Energy Research Scientific Computing Center, the Germany and U.S. Nuclear Theory Exchange Program and the Russian Science Foundation supported the theoretical work.

Written with a smile

“Can we create a small neutron star on Earth?” Vary titled a summary of the tetraneutron project. A neutron star is what’s left when a massive star runs out of fuel and collapses into a super-dense neutron structure. The tetraneutron is also a neutron structure, one Vary quips is a “short-lived, very-light neutron star.”

A personal reaction

“I had pretty much given up on the experiments,” Vary said. “I had heard nothing about this during the pandemic. This came as a big shock. Oh my God, here we are, we may actually have something new.”

Reference: “Observation of a correlated free four-neutron system” by M. Duer, T. Aumann, R. Gernhäuser, V. Panin, S. Paschalis, D. M. Rossi, N. L. Achouri, D. Ahn, H. Baba, C. A. Bertulani, M. Böhmer, K. Boretzky, C. Caesar, N. Chiga, A. Corsi, D. Cortina-Gil, C. A. Douma, F. Dufter, Z. Elekes, J. Feng, B. Fernández-Domínguez, U. Forsberg, N. Fukuda, I. Gasparic, Z. Ge, J. M. Gheller, J. Gibelin, A. Gillibert, K. I. Hahn, Z. Halász, M. N. Harakeh, A. Hirayama, M. Holl, N. Inabe, T. Isobe, J. Kahlbow, N. Kalantar-Nayestanaki, D. Kim, S. Kim, T. Kobayashi, Y. Kondo, D. Körper, P. Koseoglou, Y. Kubota, I. Kuti, P. J. Li, C. Lehr, S. Lindberg, Y. Liu, F. M. Marqués, S. Masuoka, M. Matsumoto, J. Mayer, K. Miki, B. Monteagudo, T. Nakamura, T. Nilsson, A. Obertelli, N. A. Orr, H. Otsu, S. Y. Park, M. Parlog, P. M. Potlog, S. Reichert, A. Revel, A. T. Saito, M. Sasano, H. Scheit, F. Schindler, S. Shimoura, H. Simon, L. Stuhl, H. Suzuki, D. Symochko, H. Takeda, J. Tanaka, Y. Togano, T. Tomai, H. T. Törnqvist, J. Tscheuschner, T. Uesaka, V. Wagner, H. Yamada, B. Yang, L. Yang, Z. H. Yang, M. Yasuda, K. Yoneda, L. Zanetti, J. Zenihiro and M. V. Zhukov, 22 June 2022, Nature.
DOI: 10.1038/s41586-022-04827-6

The theorists

In addition to Vary and Shirokov, others involved in the theoretical prediction of a tetraneutron were George Papadimitriou of Lawrence Livermore National Laboratory in California (and a former postdoctoral research associate at Iowa State); Alexander Mazur of Pacific National University in Khabarovsk, Russia; Igor Mazur, also of Pacific National University; and Robert Roth of Technical University of Darmstadt in Germany.

READ  Juodoji skylė taip iškreipė erdvėlaikį, kad astronomai iš toli matė šviesos blyksnius

Parašykite komentarą

El. pašto adresas nebus skelbiamas. Būtini laukeliai pažymėti *